Synthesizing organs with 3D printing

October 28, 2017

 

3D printing, refers to processes used to create a three dimensional objects in which layers of material are formed under computer control to create a whole object. Objects can be of almost any shape or geometry and typically are produced using digital model data from a 3D model.

 

The primary purpose of printable organs is in transplantation. Research is currently being conducted on artificial heart, kidney, and liver structures, as well as other major organs. For more complicated organs, such as the heart, smaller constructs like heart valves have also been the subject of research. Some printed organs have already reached clinical implementation, and primarily include hollow structures such as the bladder, as well as vascular structures such as urine tubes.

 

3D printing allows for the layer-by-layer construction of a particular organ structure to form a cell scaffold. This can be followed by the process of cell seeding, in which cells of interest are pipetted directly onto the scaffold structure. Additionally, the process of integrating cells into the printable material itself, instead of performing seeding afterwards, has been explored. Modified inkjet printers have been used to produce three-dimensional biological tissue. Printer cartridges are filled with a suspension of living cells and a smart gel, the latter used for providing structure. Alternating patterns of the smart gel and living cells are printed using a standard print nozzle, with cells eventually fusing together to form tissue. When completed, the gel is cooled and washed away, leaving behind only live cells.

 

The first 3D printer to develop stem cells organs, made by Autodesk and Organovo

 

Materials for 3D printing usually consist of alginate or fibrin polymers that have been integrated with cellular adhesion molecules, which support the physical attachment of cells. Such polymers are specifically designed to maintain structural stability and be receptive to cellular integration. The term "bioink" has been used as a broad classification of materials that are compatible with 3D bioprinting.

 

Printing materials must fit a broad spectrum of criteria, one of the foremost being biocompatibility. The resulting scaffolds formed by 3D printed materials should be physically and chemically appropriate for cell proliferation. Biodegradability is another important factor, and insures that the artificially formed structure can be broken down upon successful transplantation, to be replaced by a completely natural cellular structure. Due to the nature of 3D printing, materials used must be customizable and adaptable, being suited to wide array of cell types and structural conformations.

 

Hydrogel alginates have emerged as one of the most commonly used materials in organ printing research, as they are highly customizable, and can be fine-tuned to simulate certain mechanical and biological properties characteristic of natural tissue. The ability of hydrogels to be tailored to specific needs allows them to be used as an adaptable scaffold material that are suited for a variety of tissue or organ structures and physiological conditions.

 

Share on Facebook
Share on Twitter
Please reload

Recent Posts

December 17, 2017

Please reload

Featured Posts

Inspiration from nature

October 6, 2018

1/10
Please reload

Follow Us

  • facebook_circle_color-256